96. Unique Binary Search Trees
Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n?
Example:
Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
核心思路: 子问题为 分别以 1...n 为根, 左右子树的个数和 dp 的关系
solution from this post
we need count how many possible trees are there constructed from {2,3,4,5}, apparently it's the same number as {1,2,3,4}
/** * @param {number} n * @return {number} */ var numTrees = function(n) { if (n===0) return 0 var dp=[1,1,2] for(var i=3;i<=n;i++) { for (var j=1;j<=i;j++) { dp[i]+=dp[j-1]*dp[i-j] } } return dp[n] };